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Abstract: In this study, short-term land use and land cover (LULC) changes caused 
by human activity were considered as spatial-temporal abnormalities in time-series 
images. A density-based anomaly detection (DBAD) algorithm was designed to detect 
the changes. Then the algorithm was applied to RADARSAT time-series images, and 
synchronous field surveying was performed for validation. The results showed that 
the DBAD algorithm was good at detecting in-progress construction and newly built-
up parcels, with an error of less than 13.3%. A lower detection error was achieved 
for woodland areas, and a larger error for built-up areas and for some mixed-use land 
parcels due to the complexity of the parcels.

INTRODUCTION

The Pearl River Delta of southern China has undergone rapid urbanization since 
1980. A rough estimation by Li (2003) revealed that there was a more than 20% change 
in land use and land cover (LULC) in this area each year. Most LULC changes were 
from cultivated land to construction areas. Other changes included those from bare 
land to built-up areas, cultivated land to fish ponds, etc. Although the Pearl River 
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Delta has experienced such rapid and drastic LULC changes, little research has been 
produced on short-term LULC changes, owing to the lack of appropriate measurement 
capacity. Located in the cloudy and rainy area of southern China, the Pearl River Delta 
is subject to year-round cloud cover and high humidity. This makes short-term LULC 
monitoring almost impossible with traditional optical remote sensing. However, syn-
thetic-aperture radar (SAR) works in microwave bands and can penetrate the clouds 
and rain. This enables SAR to observe under all weather conditions and thus to com-
plement optical remote sensing. Several satellites with SAR are available for periodic 
observations, including the ERS-1, 2 (C band, VV polarization); the JERS-1 (L band, 
HH polarization); and the ASAR (C band, multi-mode, multi-polarization) satellites. 
At the time of our research, the highest resolution SAR was the Canadian RADARSAT 
(fine-beam mode, pixel size 4.6 m, spatial resolution 6.2 m). All these SAR systems 
provide stable and continuous records of the Earth’s surface even in cloudy and rainy 
areas. This meant that LULC monitoring could be carried out in almost real time. This 
is likely to be of great interest to LULC scholars and to urban scientists.

Although Nagler and Rott’s (2000) and Stabel and Fischer’s (2001) research 
attested to the success of repeat-pass SAR imagery in continuous land-surface moni-
toring under all weather conditions, several unresolved problems remained for all-
weather monitoring of LULC using a time series of SAR images. Praks et al. (2001) 
pointed out that images acquired at different times are inevitably affected by changed 
observation conditions. For example, the air humidity, rainfall, cloud cover, or obser-
vation bias caused by the instability of the platform and sensors can exert influence on 
the observation results. In addition, Quegan et al. (2000) also suggested the possibility 
of physical and biological changes of the land surface during the observation period, 
such as tree growth and the blooming of vegetation that occur mostly in agricultural or 
vegetation-covered areas. To avoid these extra-essential changes or biases, researchers 
usually choose remote sensing images collected from the same platform and acquired 
using the same parameters. Some researchers even choose images taken in the same 
season and under the same weather conditions so that the imagines’ differences owing 
to the observation system and environment can be minimized. In the case of short-term 
LULC monitoring, the time-series remote sensing images are inevitably acquired in 
different seasons and under different environmental conditions. Thus, for every two 
scenes of the images, both the LULC change and the extra-essential changes or biases 
caused by the environment and by the observation system are faithfully recorded in the 
images. To identify LULC changes in time-series images, all extra-essential changes 
or biases must be eliminated. 

As in the cases of Song et al.’s (2001) and Chen et al.’s (2005) work, image varia-
tions caused by platform and environment are usually eliminated by radiation rectifi-
cation. The variations caused by the physical or biological changes of the land surface 
are more difficult to remove, however. Moreover, the latter are sometimes visible in 
time-series images and can cause significant confusion in short-term LULC change 
detection. Qian et al. (2007) found that certain temporal patterns existed in multi-
temporal images and that these patterns could be utilized in LULC change detection. 
To achieve this, however, the images must be precisely radio-calibrated. In most cases, 
this is not an easy proposition.

Anomalies, also referred to as outliers, are defined by Hawkins (1980) and Barnett 
and Lewis (1994) as data that differ exceptionally from normal data. Anomaly detection 
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algorithms were accordingly designed to identify the small group of events that belong 
neither entirely to the background nor to any clustering of the dataset. Anomaly detec-
tion was originally introduced into remote sensing for hyperspectral analysis and for 
precise target identification. It has been found that distinct spectral signals could be 
located by anomaly detection algorithms even without any background knowledge or 
prior information (Chen et al., 2006; Lu et al., 2006). After this revelation, anomaly 
detection was adopted by geographers for the detection of geographic change. For 
example, Chen and Li (2006) applied outlier change detection algorithms to a filtered 
multi-scale digital elevation model and detected anomalous coastal terrain changes at 
different scales. Gauthier et al. (2001) used sliding-window differencing schemes and 
spatial pixel-profile analysis to examine the small-scale anomalies of linear objects in 
high-resolution images. Furthermore, Liu and Zhang (2006) assumed that the back-
ground textures of the images could be modeled by Gaussian distributions and that the 
anomaly distribution of manmade objects would be significantly different from that of 
the background. 

As summarized by Kou et al. (2006), anomalies in remote sensing so far have 
been mostly considered as spatial objects with features significantly different from 
those of their neighborhoods. This means only objects having features distinct from 
those of their neighboring objects would be detected as anomalies. This is sometimes 
not the case in real situations. In agricultural land (a paddy field for example), there 
are usually several growing stages, including transplanting, sprouting, tasseling, and 
harvesting. In each stage, the height and the leaves of the plants change significantly, 
as does the water content in the field. Because of the change in the paddy fields and 
the distinguishable difference between the fields and their neighborhoods, paddy fields 
tend to be mistaken as anomaly-changed areas when generally defined anomaly algo-
rithms are used. This can lead to considerable false or failed alarms in short-term 
LULC change detection.

In this study, the spatial and temporal anomalies of LULC change in time-series 
images were analyzed. Then the short-term LULC change was defined as an anomaly 
at the global scale. A density-based anomaly detection (DBAD) method was then pro-
posed for short-term LULC change detection, and the detection results were verified.

METHODOLOGY

Change and Anomalies

The backscattering variation in time series of SAR images may have several 
causes, including the instability of the observing platform or sensors, environmental 
changes, the seasonal variation of vegetation, and LULC change caused by human 
activity. To identify the “real” LULC changes from the changes in the time-series 
images, we must identify distinctive features to allow for discrimination. Table 1 
lists the main possible factors that can cause changes in time-series images and their 
characteristics. 

As Table 1 shows, changes caused by the observation system are usually sys-
temic and gradual and lead to consistent variation on the whole scene of the image. 
Therefore, changes of the observation system caused only temporal anomalies in the 
time-series images. As for changes in the atmospheric environment and land surface, 
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although the occurrence of such changes was relatively random and their degree was 
unpredictable, the results they caused in time-series images were usually consistent 
over the whole scenes of the images. Thus, it can be assumed that environmental 
changes cause mainly temporal anomalies in time-series images. Another factor that 
caused changes in time-series images is the physical or biological variations in veg-
etation. These variations are normally periodic and reversible. They usually occur 
synchronously throughout the study area and vary gradually with time (as with the 
paddy field we illustrated in section 1). So these variations did not cause any spatial 
or temporal anomalies in the time-series images. As a result, changes due to observa-
tion system, environment, and variation in vegetation are manifest as either spatial 
(concurrent) or temporal (synchronous) anomalies in the time-series images. By com-
parison, LULC changes caused by human activity are irregular and isolated events that 
change the land surface permanently and irreversibly. They appear to be anomalous in 
both the spatial and temporal domains in the time-series images. These LULC changes 
can be detected by applying certain temporal and spatial anomaly detection methods 
to the time-series images.

Object-Based Image Analysis

In the real world, LULC change usually occurs in object (or parcel) units. We 
therefore used object-based image analysis in this paper for anomaly detection. 
Compared with the pixel-based method, object-based image analysis can better 
describe the boundary of land parcels, using more attributes to describe the features of 
the objects, such as spectrum, shape, location, texture, etc. In addition, object-based 
image analysis is more similar to the process of manual interpretation. Hazel (2001) 
and Onana et al. (2003) found that an object-based method might help improve the 
accuracy of image analysis. Moreover, Ofer et al. (2005) found that object-based 
analysis congregates image pixels to the object, making the analysis more efficient. 
This is especially important when dealing with mass data images such as hyperspectral 
and SAR images.

To extract objects from images, remote sensing images must be segmented. In 
this study, the segmentation procedure began with one-pixel objects and then executed 
an iterative bottom-to-top object-merging. By merging pixels into smaller objects and 
then merging smaller objects into larger ones, we produced images that were seg-
mented into patches of heterogeneous objects. The heterogeneous objects were then 
the minimum units for the image analysis that followed. 

Change Vector Analysis

Change vector analysis is usually used to trace the process and magnitude of 
LULC change. Byrne et al. (1980) constructed a change vector on the basis of the 
principal component analysis of multi-temporal images. Liu et al. (2005) and Li et 
al. (2005) constructed a change vector for LULC change detection. In our study, we 
constructed change vectors on the basis of segmented objects. The spectral and texture 
attributes of each image object were extracted, and the change vector from time to 
time was calculated by the following formula:
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where X  t = (x t1, x t2,…, x tn,…, x tN) is the eigenvalue vector of an image object at time t, 
x tn is the n-th eigenvalue (of the spectral or texture attributes) of the image object at 
time t, N is the length of the eigenvalue vector of the object, and X(t – 1,t) represents 
the changes of the eigenvalue vector in magnitude and direction from time (t – 1) to t.

Density-Based Anomaly Detection (DBAD)

Density-based anomaly detection was originally proposed by Ramaswamy et al. 
(2000). They defined a local outlier factor (LOF) to measure the abnormity of object 
attributes in a dataset. The LOF calculation is simple but time consuming. When a 
dataset expands, this computing time may become unacceptable. Huang et al. (2005) 
next proposed a stochastic searching strategy for outlier detection. Their strategy 
retained some of the advantages of the LOF and reduced the number of neighbor-
hood queries. In this paper, Huang’s stochastic searching algorithm was adopted, and 
its data was extended to the N-dimension eigenvalue space. An N-dimension change 
vector was constructed and objects were detected on the basis of the distribution of the 
change vectors. The DBAD algorithm is developed as follows.

First, we define the eigenvalue of the image objects as dataset D. For each image 
object i (i ∈ D), we have a change vector X(t – 1,t) in the eigenvalue space denoted 
as vector p or q. Here we use the maximum Euclidean distance of change vectors i 
and change vectors j in t time and (t – 1) time, respectively, to evaluate the distance of 
every two objects i and j. The formula is as follows:
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where p p Xi=  and q q Xj i j,=  are the change vectors of the i-th and j-th 
image objects, and X  ti – n is the n-th eigenvalue of the image object i at time t. In for-
mula (2), object i and j will differ greatly from each other no matter whether their 
Euclidean distance is large at time t or at time (t – 1).

For any change vector p, the impact neighborhood Neib(p) is defined as

	 , (3)Neib p q D where dist p q, Eps and q C,,=

where C is a non-void dataset and Eps is the neighborhood parameter. 
If we set MinVets to be the anomaly-detection parameter, then for any change vec-

tor p and q  in the eigenvalue space, 
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if Neib (q) < MinVets, and ∀p ∈ D, if |Neib(p)| > MinVets, then q ∉ Neib(p), then p 
is referred to as the centric vector and q is referred to as the anomaly vector. Outlier 
(q) = {q ∈ D}. A schematic diagram of DBAD is shown in Figure 1.

According to the above definition of the density-based anomaly, the anomaly vec-
tors of any two scenes of the time-series images depend not only on the values of the 
change vectors but also on the density of the change vectors in the eigenvalue space. 
Isolated or sparsely distributed change vectors are determined to be anomalies in the 
dataset. Thus, change vectors that are very different from the background change vec-
tors or other synchronous land surface change vectors would be detected as anomaly 
vectors.

ANOMALY DETECTION AND LULC CHANGE ANALYSIS

Data and Data Preprocessing

The Pearl River Delta of southern China was selected as the study area. Three 
scenes of repeat-pass RADARSAT imagery were used for change detection. The prod-
uct used was the RADARSAT Single Look Complex (SLC) with a beam mode of 
“fine” (F4). RADARSAT repeat-pass imaging indicates the acquisition of imagery 
under the same conditions (same tracks and same incidence angle); in this case, the 
incidence angle was 45.08°. The imagery acquisition plan was submitted beforehand 
to the Canadian Space Agency by the Remote Sensing Ground Station in China so 
that all the images could be acquired on schedule. Table 2 lists the dates of the data 
acquisition and the corresponding prior 24 hours’ rainfall. Synchronous field survey-
ing was carried out at the same time of the scheduled RADARSAT pass of the research 
area. Field investigations included the location of the parcels, the LULC types of the 
parcels, and some description of the parcels, such as the height of the vegetation cover, 
the coverage of the vegetation, the phenology of the crops, the height of buildings, and 
so on. A scene of multi-spectral SPOT imagery (spatially enhanced, resolution 2.5 m) 
acquired at a time close to our research period (Dec 20, 2005) was used together with 
the field survey. In the production of the field survey, parcel boundaries were drawn on 
the SPOT image and their attributes recorded. When the field work was finished, the 
surveyed parcels and their attributes were digitized and stored as a reference layer. 

Fig. 1. Schematic diagram of density-based anomaly detection.
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The original pixel size of the RADARSAT SLC data, including the complex I 
and Q values of the SAR returning wave, was 4.6 × 5.1 m. The software package PCI 
XPACE Radar Analysis was used to transfer the SLC data to a ground ranged image, 
which is to say, the backscattering coefficients image. The final pixel size of the georef-
erenced ground ranged images was 6.25 × 6.25 m. The three scenes of georeferenced 
RADARSAT images were then precisely rectified to the local topographic map. 

The study area was restricted to the overlapping area of the three scenes of the 
RADARSAT images. Land use and land cover types in this area were mainly those of 
agricultural land, woodland, and water. In addition, there was also some built-up and 
residential land in this area. Figure 2 shows the location of the study area.

To reduce the speckle noise in the RADARSAT images, a 5 × 5 gamma filter was 
applied. The filtered images were then layer-stacked in chronological order. After this, 
Definiens eCognition software (2004) was used to apply multi-resolution segmen-
tation to the stacked multi-temporal images. Here, we used the same segmentation 
parameters (Table 3) that Li et al. (2009) used in their multi-temporal RADARSAT 
images segmentation, which worked on the same area using the same RADARSAT 
images. The weight 1 means that every single-temporal RADARSAT image gained the 
same consideration in the segmentation process.

Table 2. Date of Acquired RADARSAT Data and 
Corresponding Prior 24-Hour Precipitation

Date 24-hour precipitation, mma

January 27, 2006 0.0
March 16, 2006 0.0
May 3, 2006 2.9

aPrior to data acquisition.

Fig. 2. Location of the study area.
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There have been a number of publications concerning segmentation errors in 
object-based remote sensing. In this paper, no particular evaluation was performed on 
the accuracy of the segmentation. The reason is that, unlike in object-based classifica-
tion, in object-based change detection there were no direct multiplicative relationships 
between image segmentation errors and change detection errors. It is reasonable to 
assume that only a certain part of the segmentation error would be carried on to the 
following steps of change detection. Hence, in this paper no accuracy evaluation of 
the segmentation error was performed. We simply performed an overall evaluation of 
the change detection in section 3, an evaluation that might be the main concern of our 
paper. 

After segmentation, eigenvalues were extracted for each segmented object. Four 
eigenvalues (the mean backscatter coefficient of each image object [Mean], the mini-
mal backscatter coefficient of each image object [Min], the homogeneity of the gray 
level co-occurrence matrix [GLCMHomo], and the dissimilarity of the gray-level co-
occurrence matrix [GLCMdis]) were then chosen empirically to construct the change 
vectors. Figure 3 shows the workflow of data preprocessing and Figure 4 shows the 
segmentation results; Table 4 presents the corresponding change vectors.

Table 3. Segmentation Parameters  
of RADARSAT 

Parameters Value

Scale 	 20
Weight 	 1
Shape 	 0.25
Tone 	 0.75
Compactness 	 0.9
Smoothness 	 0.1

Fig. 3. Data preprocessing of RADARSAT images.
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Setting of the Change Detection Parameters

In change detection algorithms, the threshold of the differentiation of changed 
and unchanged pixels in the difference image (the value of image 1 in time t minus 
the value of image 2 in time t – 1) is a very important parameter. As Sheng et al. 
(2004) observed, the selection of this threshold could decide the overall change detec-
tion error. In most cases, these parameters are decided by mainly human experiences. 
These experiential methods are person dependent and thus not always reliable. There 
has already been research discussing the way to decide these parameters in a more 
reasonable way (Chiang et al., 2001; Im et al., 2008). In this paper, abnormal LULC 
changes were detected by DBAD, which chose the appropriate neighborhood param-
eter Eps and density parameter MinVets. It is reasonable to assume that the detected 
anomalies did not change with the values of the parameters. That is, the number of 
detected anomalies should be the same for every two image scenes and should equate 
to the number of real LULC changes in the study area. On the basis of this assumption, 
we proposed a probing search method to decide the threshold in an objective manner. 
To achieve this, a subset image was taken from the whole scene of the images, and 
the DBAD method was applied to the subset. Different Eps and MinVets values were 
brought into the DBAD. Then the numbers of detected anomalies were counted for all 
the possible values of Eps and MinVets. The results are presented in Figure 5.

Fig. 4. Result of RADARSAT image segmentation.

Table 4. Example of Two Object-Based Change Vectors

Object ID Time Mean Min GLCMHomo GLCMDis

251 January 27, 2006 –3.20 –7.43 0.12 26.16 
March 16, 2006 –3.42 –5.49 0.12 21.13 
May 3, 2006 –2.42 –5.67 0.13 21.24 

252 January 27, 2006 –1.80 –2.73 0.12 22.10 
March 16, 2006 –1.55 –3.67 0.12 25.49 
May 3, 2006 –1.47 –2.69 0.12 25.10 
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Figure 5 shows that the number of detected anomalies decreased as Eps increased. 
On the other hand, the number of anomalies increased when MinVets increased. When 
Eps was less than 0.1, the detected number increased quickly, whereas Eps decreased, 
and when Eps was greater than 1.25, the number of detected anomalies decreased 
slowly with the increase of Eps. When Eps was between 0.1 and 0.125, the detected 
number changed slowly in the range from 110 to 90. The curves corresponding to 
different MinPts intersected at the point where Eps is equal to 0.12 and when the 
detected anomaly objects were approximately 100. At this point, however, the detected 
anomaly did not vary with the parameter MinPts, which ranged from 5 to 80. It was 
still necessary to choose a median value of MinPts to assure that the algorithm was 
safe and reliable. Hence MinPts = 20 and Eps = 0.12 were selected as the threshold for 
the DBAD algorithm. 

Results and Verification

Because the study area was located in the estuary area of the Pearl River Delta, 
ships and tidal shoals inevitably affected the detection results. Therefore, the image 
objects located in the water bodies were removed from the detection datasets in 
advance. Only objects located in the land areas (of which there were approximately 
19,216 objects) were used in anomaly detection.

Table 2 shows that the three scenes of the images were acquired from late winter 
to early summer of the following year. According to local phenology, the land surface 
in this period changed significantly, especially in agricultural and vegetation-covered 
areas. For example, in January, the paddy fields were fallow, and most paddy fields 
were covered with bare soil and cropped stems. In March, it was the transplanting sea-
son for the paddies. Most of the paddy fields were filled with water. Meanwhile, other 
agricultural land planting vegetables such as corn and sugarcane were in their growing 
season. The vegetation coverage of these fields changed with the growth of the leaves 
and the height of the stems. By May, rice and other crops were still in growth, whereas 
other vegetables had already matured and were in harvest. Some vegetable fields were 
bare and some were still covered with in-harvest vegetables. These seasonal changes 
regularly occurred in our study area and were recorded in the time-series RADARSAT 
images. It is roughly estimated that more than 50% of the area accounted for over 
10% of the backscattering coefficient changes in every two scenes of our study area’s 

Fig. 5. Curves of detected object numbers and of the parameters Eps and MinVets.
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images. Such significant backscattering changes could be easily mistaken for LULC 
change by traditional methods. 

As a result, there were a total of 176 anomalous parcels detected by the DBAD 
algorithm within the study area (Fig. 6). Figure 7 shows the detail of the DBAD results 
for the subset area A. In Figure 7, four anomalously changed parcels (three large and 
one small) were detected. The largest two parcels were construction areas (converting 
from other LULC types to that of a built-up area), and the other two were in the pro-
cess of conversion from agricultural fields to fishery ponds. As the images show, the 
backscattering coefficients of the anomalous parcels and their neighboring agricultural 
parcels all changed remarkably during the observation period (indicated by the colored 
area in the composite image). The changes in agricultural lands consisted in the rapid 
growth of vegetation from January to May. However, in the change vector plots, the 
distribution density of the four detected parcels differed greatly from the densities of 
the others. Thus, these were detected as abnormally changed objects by the DBAD 
algorithm.

Figure 8 is another subset area (B) of the DBAD result. In subset area (B), most of 
the parcels were agricultural land, and there were only four parcels detected as anoma-
lies using the DBAD algorithm. Two of the anomaly parcels changed from agricultural 
land to fish ponds (the upper left and the upper right ones). The other (the lower left 
parcel) was a fishpond that was drained, dried by sun, and then refilled with water 
during the observation period. The last one (the lower right parcel) was a newly built 
residence. Because the DBAD algorithm detected the density of the change vectors in 
eigenvalue space, the results were dependent not only on the magnitude and direction 

Fig. 6. Results of density-based anomaly detection (DBAD).
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of the change vectors but also on the density of the change vectors in the eigenvalue 
space. As a result, the remarkable image changes caused by vegetation growth, which 
were common in the study area (as well as the colored areas in the composite image), 
were excluded from the real LULC change measurements because of the high den-
sities of the change vectors. Only four distinctive change vectors were detected as 
anomalies, corresponding exactly with LULC changes in the real world. Such differ-
entiation was almost impossible using traditional image comparison methods.

Fig. 7. Results of time-series anomaly change detection. A. SAR image for January 27, 2006. B. 
SAR image for March 16, 2006. C. SAR image for May 3, 2006. D. Detected anomalous parcels 
and time-series composite image: red = January 27, 2006; green = March 16, 2006; blue = May 
3, 2006. E. Change vectors from January 27, 2006 to March 16, 2006. F. change vectors from 
March 16, 2006 to May 3, 2006.
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In sum, the above examples show that although images varied noticeably in the 
RADARSAT time series, the distribution densities of the LULC changed parcels in 
their change vector space were apparently different from those of the seasonal vegeta-
tion changes or environmental changes. Thus, the DBAD method could be used for 
LULC change detection in time-series images that concern not only the value of the 
change vectors but also the distribution of the change vectors. The detection result 
shows obvious differences from the regular change detection result. 

Finally, the results were validated using field survey data. Just as most publi-
cations have stated (Weidner, 2008; Zhan et al., 2005), object-based image analysis 

Fig. 8. Results of time-series anomaly detection. A. SAR image for January 27, 2006. B. SAR 
image for March 16, 2006. C. SAR image for May 3, 2006. D. Detected anomalous parcels and 
time-series composite image: red: January 27, 2006; green: March 16, 2006; blue: May 3, 2006. 
E. Change vectors from January 27, 2006 to March 16, 2006. F. Change vector from March 16, 
2006 to May 3, 2006.
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concerns not only pixel-by-pixel classification (or change detection) error, but also 
object-by-object geometric error. So, in this paper, change detection errors were evalu-
ated both in terms of objects (parcels) and in terms of pixels. To evaluate the result in 
pixels, all the detected parcels and the field-surveyed parcels were rasterized to 6.25 × 
6.25 m resolution. To evaluate the result in parcels, the segmented image parcels were 
compared to the field-collected parcels in their spatial and LULC attributes. Here we 
prescribed that detected parcels that were completely within the referenced parcel or 
that shared more than 80% of their area with the referenced parcels were regarded as 
correct in location. Then, the change attributes of the detected parcels were evalu-
ated relative to the reference data. To evaluate the detection capability of the DBAD 
algorithm for different LULC change classes, the parcel-based detection accuracies 
were calculated in terms of each change class. 

Table 5 lists all the actual LUCC change detected by field surveying and the detec-
tion errors of the parcel-based DBAD. In Table 5, the highest detection accuracy was 
achieved in newly built-up land parcels or in land parcels under construction (with a 
failed alarm rate of less than 13.3%). A relatively low detection error was achieved in 
woodlands (false alarm rate error less than 8.3%), which owes to the stability of the 
woodlands in the observation periods. The failed alarms in agricultural land and fish 
ponds were between 12.5 and 25.0%. The error in fish ponds was mainly caused by 
changes of the shoals and riverbanks. A relatively large detection error was obtained 
in built-up areas and in agricultural land, including construction areas, rural residential 
areas, and some mixed-use areas (with false alarm rates between 16.7 and 20.0%). The 
error was mainly due to the internal complexity and multiformity of the built-up areas 
and the agricultural land. In these areas, the backscattering coefficient varied with 
the parcels and with time. Hence, some of these parcels might have been mistaken as 
anomalies by the DBAD algorithm. Incorrect segmentation also introduced some error 
to DBAD. This always occurred for the objects that were located at the boundary of 
the parcels or within some mis-georectified area.

In the end, a pixel-based change vector was constructed and a pixel-based DBAD 
algorithm was tested in comparison with the object-based DBAD algorithm. In pixel-
based DBAD, image texture homogeneity and dissimilarity were calculated through 
PCI Radar Analysis. The change vectors were constructed using the backscatter-
ing coefficient, homogeneity, and dissimilarity. The accuracy assessment listed in 
Table 6 shows that, in comparison to pixel-based DBAD (overall accuracy 76.9%), 
object-based DBAD produced better overall accuracy (84.4%). The overall kappa for 
changed and unchanged classes also revealed that the object-based DBAD (0.69) pro-
duced more satisfactory accuracy than the pixel-based method (0.53). That is, benefit-
ting from the homogeneously merged pixels set, the object-based DBAD algorithm 
achieved a higher accuracy than did the pixel-based method.

CONCLUSION

Based on the above experiments, the DBAD algorithm was able to detect anoma-
lous changes in time-series images that suffered significantly from changeable environ-
ments and variable observation systems. By applying a stochastic searching strategy 
to the algorithm, the DBAD algorithm effectively detected the anomalously changed 
objects by removing regularly and consistently changed objects from the datasets. 
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The experiment used a set of SAR time-series images over the cloudy and rainy area 
of southern China and confirmed that the DBAD algorithm was capable of detecting 
LULC changes in the short term. The results showed that the algorithm performed 
outstandingly in detecting areas of new construction or of construction in-progress, 
including areas changing from bare to built-up land or from agricultural to built-up 
land. By calculating the distribution density of the change vectors in the eigenvalue 
space, the LULC change parcels could be easily differentiated from the other land 
parcels. Although the land parcels in our study area were fragmented and the vegeta-
tion types diverse, making the LULC change detection relatively difficult, it was still 
possible to detect suspicious changes by way of the DBAD algorithm. 

In this study, the DBAD algorithm only detected change parcels from short-term 
time-series images. It did not provide the detailed “from-to” information for particular 
parcels that was also significant in LULC change. In order to acquire accurate “from-
to” information from DBAD results, quite a lot work remains to be done. Thus we 
propose that the results of DBAD be used together with other methods for further 
validation or classification.

Compared with traditional image comparison methods, DBAD is an unsupervised 
method that does not require prior knowledge or high-quality training data. Because 
DBAD takes both global and local changes into consideration, it can remove changed 
image-objects caused by the observation system or the environment and detect the 
objects caused by “real” LULC change. This makes DBAD a powerful change detec-
tion tool that could work in a variety of environmental situations.

As an all-weather operable observing system, SAR imagery was an ideal source 
of data for short-term LULC change detection. Although SAR time-series images col-
lected data in short time intervals and had recorded all the observable seasonal changes 
and changes caused by the observation system or the environment, the anomaly detec-
tion method proposed in this paper could effectively correct these data by extracting 
the real LULC change from other “false” changes. This helps to improve the accuracy 
of short-term LULC change detection. 

In addition, we used just four relatively simple metrics in this study to construct 
our change vectors. These variables were chosen by expert experience. The results 
showed that these four variables worked well in our algorithm. Although there is 
no reason to believe that more variables or another combination of variables would 
increase the detection accuracy, we suggest that further research be done on the con-
struction or optimization of the change vectors.

Table 6. Comparison of object-based DBAD and  
pixel-based DBAD 

Object-based Pixel-based

Failed alarm (%) 16.4 22.9
False alarm (%) 14.9 23.2
Overall accuracy (%) 84.4 76.9
Overall kappa 0.69 0.53 
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